

Optimization based planning of energy systems

Graz, 22.01.2020

Michael Zellinger

nnetence Centers f

Bundesministerium
Digitalisierung und
Wirtschaftsstandort

Bundesministerium Verkehr, Innovation und Technologie

agentur wien Ein Fonds der Stadt Wien

wirtschafts

1

Regional Energy: Electricity, Heating, Cooling

Change of energy system:

- Microgrids
- Cellular Energy Systems
- Local Energy Communities

Local energy systems:

- high efficiency since generation and loads are close to each other,
- excellent integration of volatile renewables since loads and generation can be controlled as on entity,
- less need for intense "energy transit",
- increased reliability,
- reduced CO₂ emissions...

Successful application

- Economic and environmental concerns
- Optimal combination of DERs and their technology size
- Cost objectives
 - Annual energy costs
 - CAPEX
 - OPEX
- Emission objectives
 - Total emission volume
- Consideration of
 - Investments
 - Operational costs
 - Maintenance costs
- Different modeling approaches exists
 - Simulation
 - Optimization

Minimization

Conceptual Planning

Conceptual Design Method: Simulation

- Simulation of different technology interaction
- Input changed \rightarrow check how changes impact output
- No built in mechanism to find the best solution

Simulation of different combinations

Millions of combinations exists

Conceptual Design Method: Optimization

- Usage of mathematical optimization techniques to find true optimal combination
- Size, Location, Dispatch
- Multi Objective
 - Costs
 - Emissions

Minimization of cost function	$f(x) = \sum_{k} c_k \cdot x_k$
	Decision variable
Restrictions	$\sum_k a_{ik} \cdot x_k \leq b_i$
Non- negative Variables	$\forall k \ x_k \ge 0$
	22.01.202

Optimization with OptEnGrid based on DER-CAM⁺

DER-CAM⁺ DECISION SUPPORT TOOL FOR DECENTRALIZED ENERGY SYSTEMS TOPOLOGY | ANALYTICS | PLANNING | OPERATIONS

*https://building-microgrid.lbl.gov/projects/der-cam

Powerful decision support tool

Developed in the USA

>1500 User/ Institution in more than 24 countries

Optimization with OptEnGrid based on DER-CAM⁺

DER-CAM⁺ developed for the US market → Focus on electricity

OptEnGrid → Further development and adaption on European market

- Thermal sector Biomass
- Power2Gas

- Seasonal storage
- European energy market (Pricing, Regulatory,...)
- 8760 optimization

DER-CAM⁺ DECIDECEN TOPOLOGY | ANALYTICS | PLAN

22.01.2020

Optimization with OptEnGrid: Energy flow optimization – basic modeling problem

Energy flow optimization in a microgrid

Planning based on Mixed Integer Linear Programming (MILP)

Case Study – Planned Smart Village

- Four semi-detached houses, a apartment house with 8 apartments, a technical center and a Carport
- Microgrid concept based on OptEnGrid

Optimal dispatch for heating technologies (April – week)

Optimal dispatch for electricity technologies (August-week)

Comparison basecase and optimization

Reference case

Optimization case

→Life cycle cost
reduction of more than
20 %

 \rightarrow CO₂ reduction of roughly 85 % in the case study

Electricity Import = Electricity Export = Electricity CHP = Electricity PV
Electricity GSHP = Fuels = CO2-Emissions

Conclusion

- Local energy grids (microgrids) have huge positive potential, but can reach a very high level of complexity
- A variety of different ways to cover energy consumption with DERs
- Mathematical optimization is able to deal with the complexity
- Planning tool for technology providers, energy suppliers, energy planners and regulatory authorities

Microgrid Team

Michael Stadler Michael Zellinger Stefan Aigenbauer Muhammad Mansoor Christine Mair Armin Cosic Pascal Liedtke

OptEnGrid Energieoptimierung mit System

Michael Zellinger michael.zellinger@best-research.eu

22.01.2020